Skip to main content
Log in

Characterization of an epithelial cell line from bovine mammary gland

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Elucidation of the bovine mammary gland's unique characteristics depends on obtaining an authentic cell line that will reproduce its function in vitro. Representative clones from bovine mammary cell populations, differing in their attachment capabilities, were cultured. L-1 cells showed strong attachment to the plate, whereas H-7 cells detached easily. Cultures established from these clones were nontumorigenic upon transplantation to an immunodeficient host; they exhibited the epithelial cell characteristics of positive cytokeratin but not smooth muscle actin staining. Both cell lines depended on fetal calf serum for proliferation. They exhibited distinct levels of differentiation on Matrigel in serum-free, insulin-supplemented medium on the basis of their organization and β-lactoglobulin (BLG) secretion. H-7 cells organized into mammospheres, whereas L-1 cells arrested in a duct-like morphology. In both cell lines, prolactin activated phosphorylation of the signal transducer and activator of transcription, Stat5—a regulator of milk protein gene transcription, and of PHAS-I—an inhibitor of translation initiation in its nonphosphorylated form. De novo synthesis and secretion of BLG were detected in differentiated cultures: in L-1 cells, BLG was dependent on lactogenic hormones for maximal induction but was less stringently controlled than was β-casein in the mouse CID-9 cell line. L-1 cells also encompassed a near-diploid chromosomal karyotype and may serve as a tool for studying functional characteristics of the bovine mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, R. K.; Friis, R. R.; Schoenenberger, C. A., et al. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 7:2089–2095; 1988.

    PubMed  CAS  Google Scholar 

  • Barash, I. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent but wortmannin- and rapamycin-sensitive pathway. Mol. Cell Endocrinol. 155:37–49; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Barash, I.; Faerman, A.; Baruch, A., et al. Synthesis and secretion of human serum albumin by mammary gland explants of virgin and lactating transgenic mice. Transgenic Res. 2:266–276; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Baruch, A.; Shani, M.; Hourwitz, D., et al. Developmental regulation of the β-lactoglobulin/human serum albumin transgene is distinct from that of the β-lactoglobulin and endogenous β-casein gene in the mammary gland of transgenic mice. Dev. Genet. 16:241–252; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Danielson, K. G.; Oborn, C. J.; Durban, E. M., et al. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl. Acad. Sci. USA 81:3756–3760; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Duchler, M. D.; Schmoll, F.; Pfneisl, F., et al. OMEC II: a new ovine mammary epithelial cell line. Biol. Cell 90:199–205; 1988.

    Article  Google Scholar 

  • Ebner, K. E.; Hageman, E. C.; Larson, B. L. Cultivation and properties of mammary cell cultures. Exp. Cell. Res. 23:373–385; 1961.

    Article  PubMed  CAS  Google Scholar 

  • Gallie, D. R.; Traugh, J. A. Serum and insulin regulate cap function in 3T3-L1 cells. J. Biol. Chem. 269:7174–7179; 1994.

    PubMed  CAS  Google Scholar 

  • Groner, B.; Gouilleux, F. Prolactin-mediated gene activation in mammary epithelial cells. Curr. Opin. Genet. Dev. 5:587–594; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Huynh, H. T.; Robitaille, G.; Turner, J. D. Establisment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp. Cell Res. 197:191–199; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ilan, I.; Barash, I.; Faerman, A., et al. Dual regulation of β-lactoglobulin/human serum albumin by the extracellular matrix in mammary cells from transgenic mice. Exp. Cell. Res. 224:28–38; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ilan, N.; Barash, I.; Gootwine, E., et al. Establishment and initial characterization of the ovine mammary epithelial cell line NISH. In Vitro Cell. Dev. Biol. 34:326–332; 1998.

    CAS  Google Scholar 

  • Kimball, S. R.; Jurasinski, C. V.; Lawrence, J. C., Jr., et al. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4C. Am. J. Physiol. 272:C754-C759; 1997.

    PubMed  CAS  Google Scholar 

  • Kordon, E. C.; Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930; 1998.

    PubMed  CAS  Google Scholar 

  • Long, E.; Lazaris-Karatzas, A.; Karatzas, C., et al. Overexpressing eukaryotic translation initiation factor 4E stimulates bovine mammary epithelial cell population. Int. J. Biochem. Cell Biol. 33:133–141; 2001.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, D. D.; Forsyth, I. A.; Brooker, B. E., et al. Culture of bovine mammary epithelial cells on collagen gels. Tissue Cell 14:231–241; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Merrick, W. C.; Hershey, J. W. B. The pathway and mechanism of eukaryotic protein synthesis. In: Hershey, J. W. B.; Mathews, M. B.; Sonenberg, N., ed. Translation control. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1996:31–69.

    Google Scholar 

  • Pechoux, C.; Gudjonsson, T.; Ronnov-Jessen, L., et al. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev. Biol. 206:88–99; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Piedrahita, J. A. Targeted modification of the domestic animal genome. Theriogenology 53:105–116; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ramagnolo, D.; Akers, R. M.; Byatt, J. C., et al. IGF-I-induced IGFBP-3 potentiates the mitogenic actions of IGF-I in mammary epithelial MD-IGF-I cells. Mol. Cell. Endocrinol. 102:131–139; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, R. M.; Akers, R. M.; Forsten, K. E. Real-time detection of insulin-like growth factor-1 stimulation of the MAC-T bovine mammary epithelial cell line. Endocrine 13:345–352; 2000a.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, R. M.; Akers, R. M.; Forsten, K. E. Microphysiometry to evaluate real-time response of mammary epithelial cells to IGF-I. Crit. Rev. Biomed. Eng. 28:209–211; 2000b.

    PubMed  CAS  Google Scholar 

  • Romagnolo, D.; Akers, R. M.; Wong, E. A., et al. Lactogenic hormones and extracellular matrix regulate expression of IGF-1 linked to MMTV-LTR in mammary epithelial cells. Mol. Cell. Endocrinol. 96:147–157; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, J. M.; Wyszomierski, S. L.; Hadsell, D. Regulation of milk protein gene expression. Annu. Rev. Nutr. 19:407–436; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Schmidhauser C.; Bissell, M. J.; Myers, C., et al. Extracellular matrix and hormones transcriptionally regulate bovine β-casein 5′ sequences in stably transfected mouse mammary cells. proc. Natl. Acad. Sci. USA 87:9118–9122; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, T. T.; Broadhurst, M. K.; Sadowski, H. B., et al. Stat5 phosphorylation status and DNA-binding activity in the bovine and murine mammary glands. Mol. Cell. Endocrinol. 176:39–48; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, T. T.; Kuys, Y. M.; Broadhurst, M. M., et al. Mammary Stat5 abundance and activity are not altered with lactation state in cows. Mol. Cell. Endocrinol. 133:141–149; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wilde, C. J.; Knight, C. H.; Flint, D. J. Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia 4:129–136; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, T. L.; Turner, J. D.; Hung, H. T., et al. Inhibition of cellular proliferation and modulation of insulin-like growth factor binding proteins by retinoids in a bovine mammary epithelial cell line. J. Cell. Physiol. 167:488–499; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J.; Kennelly, J. J.; Baracos, V. E. Physiological levels of Stat5 DNA binding activity and protein in bovine mammary gland. J. Anim. Sci. 78:3126–3134; 2000a.

    PubMed  CAS  Google Scholar 

  • Yang, J.; Kennelly, J. J.; Baracos, V. E. The activity of transcription factor Stat5 responds to prolactin, growth hormone, and IGF-I in rat and bovine mammary explant culture. J. Anim. Sci. 78:3114–3125; 2000b.

    PubMed  CAS  Google Scholar 

  • Zavizion, B.; van Duffelen, M.; Schaeffer, W., et al. Establishment and characterization of a bovine mammary myoepithelial cell line. In Vitro Cell. Dev. Biol. 32:149–158; 1996.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Barash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

German, T., Barash, I. Characterization of an epithelial cell line from bovine mammary gland. In Vitro Cell.Dev.Biol.-Animal 38, 282–292 (2002). https://doi.org/10.1290/1071-2690(2002)038<0282:COAECL>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0282:COAECL>2.0.CO;2

Key words

Navigation